
Journal of Computational Physics 228 (2009) 6590–6616
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Sharp interface immersed-boundary/level-set method
for wave–body interactions

Jianming Yang *, Frederick Stern
IIHR – Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242, USA
a r t i c l e i n f o

Article history:
Received 22 January 2008
Received in revised form 6 May 2009
Accepted 30 May 2009
Available online 12 June 2009

PACS:
47.11.�j
47.27.�i
47.35.�i
47.55.�t

Keywords:
Cartesian grid method
Sharp interface method
Immersed boundary method
Level-set method
Ghost–fluid method
Large-eddy simulation
Ship hydrodynamics
Two-phase flow
Moving bodies
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.05.047

* Corresponding author. Tel.: +1 319 335 5749; fa
E-mail addresses: jianming-yang@uiowa.edu (J. Y
a b s t r a c t

A sharp interface Cartesian grid method for the large-eddy simulation of two-phase turbu-
lent flows interacting with moving bodies is presented. The overall approach uses a sharp
interface immersed boundary formulation and a level-set/ghost–fluid method for solid–fluid
and fluid–fluid interface treatments, respectively. A four-step fractional-step method is used
for velocity–pressure coupling, and a Lagrangian dynamic Smagorinsky subgrid-scale model
is adopted for large-eddy simulations. A simple contact angle boundary condition treatment
that conforms to the immersed boundary formulation is developed. A variety of test cases of
different scales ranging from bubble dynamics, water entry and exit, landslide-generated
waves, to ship hydrodynamics are performed for validation. Extensions for high Reynolds
number ship flows using wall-layer models are also considered.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Incompressible two-phase flows interacting with moving bodies are encountered in many scientific and engineering appli-
cations, such as ship hydrodynamics, ocean and coastal engineering, and civil and environmental engineering. The computer
simulations of these flows are extremely complicated as the intricate physical phenomena involved, e.g. turbulence, breaking
waves, wave impacts, and wave–structure interactions, present significant challenges to the computational methods.

In general, computational methods for free-surface/two-phase flows with complex geometries and moving bodies can be
categorized into three groups: meshless methods, moving grid methods, and fixed grid methods. In the meshless methods,
discrete, moving particles are used to represent the continuous fluid motion. Due to the complexities of algorithms and
requirements of computer resources, the meshless methods have only limited application, although there is an increased
interest recently. In the moving grid methods, body-fitted grids are attached to the solid surfaces or even the interfaces
between two different fluids, whereas the overall grids can be unstructured, block-structured, or overlapping grids. In
. All rights reserved.

x: +1 319 335 5238.
ang), frederick-stern@uiowa.edu (F. Stern).

mailto:jianming-yang@uiowa.edu
mailto:frederick-stern@uiowa.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616 6591
general, these methods were applied to free-surface flows with single stationary or moving body/structure. Although signif-
icant progress has been made in moving grid methods, the grid deformation, re-generation and overlapping interpolation are
still very time-consuming and prone to errors. On the other hand, in the fixed grid methods, solid boundaries and phase
interfaces can have unrestricted motions across the underlying fixed grid lines, which are usually not aligned with the so-
lid–fluid and/or the fluid–fluid interfaces. And, in most cases, Cartesian grids, which further simplify the gridding require-
ments, are used to cover the whole computational domain, although some techniques developed on fixed Cartesian grids
have been applied to fixed curvilinear and unstructured grids.

Considering the interest of this study, only the computational methods using fixed Cartesian grids for free-surface/two-
phase flows with moving bodies will be discussed here. Basically, there are two important aspects, besides the differences in
solution methods for the Navier–Stokes equations, to distinguish different methods for free-surface/two-phase flows with
moving bodies on fixed Cartesian grids: methods for tracking the evolving fluid–fluid and solid–fluid interfaces and methods
for enforcing the jump/boundary conditions at the phase interface/boundary that is immersed in a Cartesian grid and does
not align with the underlying fixed grid lines.

Tracking a moving interface has been one of the major topics since the very beginning of computational fluid dynamics
(CFD). In general, there are two different types of methods from the point of view of how an interface is identified and ad-
vected. In the Lagrangian methods, massless markers, with or without connectivity, are placed on an interface and move
with it by directly integrating the evolution equation of a fluid particle. The front tracking method [42] is one Lagrangian
method frequently used in two-phase flow simulations. On the other hand, in Eulerian methods, a field function with the
interface information embedded is advected in an Eulerian manner. Methods of this type are usually called volume tracking
or interface capturing methods as the position of the interface is not known exactly from the field function. The volume-of-
fluid (VOF) method [15] and the level-set method [33] are two popular Eulerian methods for interface capturing. There are
various pros and cons of each method for tracking an interface. Therefore, many hybrid interface tracking schemes have been
developed to combine the advantages of different methods.

Once an immersed interface/boundary is identified using an interface tracking/capturing method, the next step is to en-
force the jump/boundary conditions at the immersed interface/boundary, which is trivial for an interface- or body-fitted grid
method as the grid lines are made to follow the phase interface. Therefore, a perceptible choice is to separate a grid cell cut
through by the interface into, e.g. two grid cells of two different phases, such that essentially two interface- or body-fitted
grids are formed with each grid for one single phase. Methods of this type are usually named cut-cell or embedded boundary
methods, which have been applied to both solid–fluid and fluid–fluid interface treatments. Although the cut-cell methods
are sharp interface approaches, they are very difficult to apply to three-dimensional (3D) problems, especially, when moving
interfaces/boundaries are involved, due to the large number of special treatments required by the numerous different inter-
face cells generated during the cutting and merging processes. On the other hand, in many circumstances the sharp interface
requirement can be relaxed and an interface is allowed to have a finite thickness, usually, of one to several grid cells. The
immersed boundary method originated by Peskin [35] is one of the widely used Cartesian grid methods with a smeared
interface. In Peskin’s method, the effects of solid/elastic boundaries on the fluid are modeled by a set of body forces distrib-
uted over the nearby flow field of the immersed boundaries. This idea has been extended to treat the surface tension force in
two-phase flows in [42,4]. In the past few years, several sharp interface methods using forcing or correction terms have been
developed for solid–fluid and fluid–fluid interface problems, such as the direct forcing immersed boundary method [9], and
the immersed interface method [24], among others. In Fadlun et al. [9] the concept of body forcing was also adopted, how-
ever, in a discrete manner and a sharp interface was retained. The ghost–fluid method, which is conceptually similar to the
immersed interface method but neglects the second-order derivatives in the jump conditions and is used in a dimension-by-
dimension manner, was developed in [20] for the sharp interface treatment of a fluid–fluid interface. Both the direct forcing
immersed boundary method and the ghost–fluid method have gained increased popularity because of their increased accu-
racy over the diffusive interface methods and their straightforward implementation in 3D applications.

Some computational methods have been developed for free-surface flows with a moving body as the gas phase plays a
minor role and can be neglected without substantially altering the flow physics in many applications. In [22], a finite volume
Cartesian grid method was developed for wave impact problems. Lin [25] also developed a finite difference Cartesian grid
method for free-surface flows with a moving body. In both methods, Lagrangian methods were used to track the solid bodies
and VOF methods were used to track the free surfaces. The so-called free-surface boundary conditions, i.e. atmospheric
pressure is given and shear stress is neglected, were applied at the free surfaces; cut-cell methods were used to treat the
solid–fluid interface. Especially, in [25], a ‘‘locally relative stationary” technique was developed for accounting for the effect
of body motion. Various water entry/impact problems and other cases were shown in [22,25]. However, neither of the two
methods were applied to free-surface flows with 3D moving bodies. A sharp interface Cartesian grid method for droplet im-
pact problems was developed in [27], with both the fluid–fluid and solid–fluid interfaces defined using level-set functions.
The ghost–fluid method was used to treat jump conditions at the fluid–fluid interfaces. The solid–fluid interface treatment
was developed along the line of cut-cell methods, using a one-side finite difference scheme to avoid the cumbersome cell
cutting and merging processes in the finite volume framework. But only 2D droplet impact problems with stationary geom-
etry were shown in [27]. The CIP (cubic-interpolated propagation/constrained interpolation profile) method [47] is another
unified treatment that track a solid–fluid interface in the same way as that for a fluid–fluid interface. In the CIP method, a
color function with a definition similar to the volume fraction function in the VOF method was transformed to a smoothed
profile using a tangent function, then the smoothed function was advected using the CIP schemes, and finally the smoothed



6592 J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616
function was inverted to give a sharper profile. Similar to Peskin’s immersed boundary method, the fluid–fluid and solid–
fluid interfaces are diffused. But instead of the smoothed delta function in Peskin’s method, the color function was used
to smear the interfaces and interface jump/boundary conditions. In addition, to reflect the presence of the solid phase in
the flow field, the solid phase was treated in the same way as the fluid phase, but with the velocity of the solid phase ob-
tained from prescribed values or predicted solutions by solving the governing equations for the motion of the solid phase.
The CIP method has been applied to a wide range of 2D and 3D two-phase flows with moving solid bodies. However, it is
memory- and CPU-intensive as the derivatives of the primitive variables are stored and solved. The algorithm is fairly com-
plicated due to the extra equations introduced. Also, a solid body sometimes was distorted and the sharp solid–fluid inter-
face was smeared out. For some variants and applications of the CIP method, the reader is referred to [54,48].

An additional consideration for simulating gas–liquid–solid systems is the contact angle boundary condition. In [40], an
iterative method similar to the level-set reinitialization equation was developed by adding a time derivative term to the con-
tact angle boundary condition and constructing an extension velocity field for the level-set function. By solving such an
equation in pseudo-time iteratively, the level-set field was extended into the solid bodies and the contact angle boundary
condition was satisfied. In [27] a local level-set reconstruction method was presented for enforcing the dynamic contact an-
gle boundary condition. A local 2D parabola was established by searching and identifying two grid points near the contact
points and then the level-set function was extended into the solid body following the parabola. A virtual surface method was
proposed in [44] to enforce contact angles at the intersection of a fluid interface and a general 3D curved solid surface. In this
approach, a local stencil box centered near the contact front was setup and the virtual surface was constructed as a level-set
function in the solid region. This level-set function is computed at the stencil nodes directly and then propagated to off-sten-
cil nodes via a fast marching method.

In this paper, a combined sharp interface immersed-boundary/level-set Cartesian grid method is developed for the large-
eddy simulations (LES) of 3D two-phase flows interacting with moving bodies. In the current approach, a Lagrangian method
is used to track the solid–fluid interface for accuracy and efficiency. The second-order direct forcing, sharp interface im-
mersed boundary method for moving boundary problems in [49] is used to treat the moving bodies. The fluid–fluid interface
is captured using a high-order level-set method with third-order TVD (Total Variation Diminishing) Runge–Kutta and fifth-
order HJ (Hamilton–Jacobi) WENO (Weighted Essentially Non-Oscillatory) schemes. The ghost–fluid method [26,20] is used
to handle fluid–fluid interfaces in a sharp manner. In addition, a simple contact angle boundary condition treatment is devel-
oped. The applications of interest herein are the complicated flow problems in many engineering fields, especially, ship
hydrodynamics, with a wide spectrum of scales, such as wave–body interactions, wave–wave interactions, breaking waves,
bubbles and droplets. Therefore, a variety of test cases of different scales ranging from bubble dynamics, water entry and
exit, landslide-generated waves, to ship hydrodynamics are performed for validation purpose in this study.

For ship wave problems, several Cartesian grid methods were presented in the literature. In [32], a modified Marker and
Cell method (TUMMAC) was developed for the finite difference solution of non-linear wave generation in the near field of
ships. A Cartesian grid approach was presented in [40] with a coupled level-set/volume-of-fluid method for interface cap-
turing and an embedded boundary method for the immersed geometry. Another approach using immersed-body and vol-
ume-of-fluid methods was also shown in [40] and its latest development was given in [8] for ship waves simulations. The
current method is different from these methods in many aspects as will be shown in detail later. For example, it uses a sec-
ond-order sharp interface immersed boundary method for two-phase flows with multiple moving bodies on fixed Cartesian
grids. Although free-surface flows with a moving body were shown in [8], a non-inertial reference frame fixed with respect
to the moving body, which is unable to handle multiple moving bodies. In addition, a ghost–fluid method is used in the cur-
rent approach without smearing the density across the fluid–fluid interface.

2. Mathematical model

2.1. Navier–Stokes equations

The incompressible viscous flows of two immiscible fluids, e.g. air and water, are governed by the Navier–Stokes
equations:
@u
@t
þ u � ru ¼ 1

q
r � ð�pIþ TÞ þ g; ð1Þ

r � u ¼ 0; ð2Þ
where t is the time, u is the velocity vector, p is the pressure, I is the unit tensor, q is the density, g represents the gravity, and
T is the viscous stress tensor defined as
T ¼ 2lS; ð3Þ

with l the dynamic viscosity, S the strain rate tensor given by
S ¼ 1
2
ruþ ðruÞT
h i

; ð4Þ
where the superscript T represents transpose operation.



J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616 6593
2.2. Interface modeling

2.2.1. Interface tracking
Defining the interface C as the zero level set of a signed distance function, /, or the level-set function, the position of the

interface can be tracked by solving the level-set evolution equation [33]
@/
@t
þ u � r/ ¼ 0: ð5Þ
The reinitialization equation [39] for the level-set function is iteratively solved to keep / as a signed distance function in the
course of its evolution:
@/
@s
þ Sð/oÞðjr/j � 1Þ ¼ 0; ð6Þ
where s is the pseudo-time for the iteration and Sð/oÞ is the numerically smeared-out sign function
Sð/oÞ ¼
/offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/2
o þ ðDhÞ2

q ; ð7Þ
with /o the initial values of / and Dh a small amount, usually the grid cell size, to smear out the sign function.
Since the level-set function is a signed distance function, the unit normal vector, n, and the local curvature, j, of the inter-

face can be readily calculated by applying standard finite difference to the level-set function:
n ¼ r/
jr/j ; ð8Þ
and
j ¼ r � n ¼ r � r/
jr/j ; ð9Þ
respectively.

2.2.2. Physical properties
Each phase of constant density and viscosity can be easily defined by the level-set function in the computational domain

and sharp jumps of the fluid properties occur at the phase interface. In the ghost–fluid method for incompressible two-phase
flows [20], the discontinuous fluid properties were considered and the interface jump conditions were tackled in a sharp
manner. Unfortunately, the viscous terms were treated explicitly in [20], which imposed a severe time step limitation to
the simulations. And due to the coupled manner of the interface jump conditions, an implicit treatment of the viscous terms
requires the solution of the entire coupled system of three velocity components [16]. Sussman et al. [41] presented a semi-
implicit ghost–fluid method with a sharp viscosity jump, but neglected viscous flux jumps. Several authors chose to regu-
larize the viscosity with a smoothed Heaviside function across the interface [43,11]. For simplicity and efficiency, the density
keeps its sharp jump, whereas the viscosity is smoothed over a transition band across the interface in this study:
q ¼ qG þ ðqL � qGÞHð/Þ;
l ¼ lG þ ðlL � lGÞH�ð/Þ;

ð10Þ
where the subscripts G and L represent gas and liquid phase, respectively. The stepwise Heaviside function is defined as
Hð/Þ ¼
1; if / P 0;
0; if / < 0;

�
ð11Þ
and the smoothed Heaviside function [39] is
Heð/Þ ¼
1; if / > e;
1
2 1þ /

e þ 1
p sin p/

e

� �� �
; if j/j 6 e;

0; if / < �e:

8><
>: ð12Þ
2.2.3. Jump conditions
Since the fluids considered here are viscous and no phase change occurred, the velocity across the interface C is

continuous:
½u� ¼ 0; ð13Þ
where ½�� indicates the jump at the interface, i.e. f I
L � f I

G for a variable f with superscript I denotes interface.



6594 J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616
The exact jump condition for stress is
½n � ð�pIþ lðruþ ðruÞTÞÞ � n� ¼ rj; ð14Þ

where r is the coefficient of surface tension.

The gravity term can be removed from Eq. (1) by incorporating the gravity into the jump condition as
½n � ð�pdIþ lðruþ ðruÞTÞÞ � n� ¼ rjþ ½q�X � g; ð15Þ

where pd represents the dynamic pressure (for simplicity, p is used hereafter), ½q� is the density jump at the interface, and X is
the position vector normal to the reference plane of zero hydrostatic pressure.

With a continuous viscosity and velocity field, the stress jump conditions Eq. (14) reduce to
½p� ¼ pI
L � pI

G ¼ �rj� ½q�X � g: ð16Þ
2.3. Subgrid-scale model

In the LES approach adopted here, the Navier–Stokes equations are spatially filtered such that the large, energy carrying
eddies are resolved and the small-scale, dissipative eddies are modeled by a subgrid-scale model. The following equations
can be obtained after applied the filter operation to Eqs. (1) and (2):
@�u
@t
þ �u � r�u ¼ � 1

q
r�pþ 1

q
r � ½lðr�uþ ðr�uÞTÞ� � r � �s; ð17Þ

r � �u ¼ 0; ð18Þ
where �f denotes the filter operation on a variable f ; �s ¼ uu� �u�u is the subgrid-scale (SGS) stress tensor, whose deviatoric
part is parametrized by following the Smagorinsky procedure as:
�s� 1
3

traceð�sÞI ¼ �2mtS: ð19Þ
And the turbulent eddy viscosity is defined as
mt ¼ CD2jSj; and jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2S � S

p
: ð20Þ
The model parameter C in the eddy viscosity definition has to be given to close the equations. In this paper the Lagrangian
dynamic SGS model [31] is chosen as it can handle complex geometries without the requirement of homogeneous direc-
tion(s). Therefore, Eq. (17) can be rewritten as the following form:
@�u
@t
þ �u � r�u ¼ � 1

q
r�pþ 1

q
r � ½lðr�uþ ðr�uÞTÞ� þ r � ½mtðr�uþ ðr�uÞTÞ�; ð21Þ
with the trace of SGS stress tensor 1
3 traceð�sÞ (and gravity as discussed in Section 2.2.3) incorporated into �p. Also, an effective

total viscosity cannot be defined using lþ qmt since q is discontinuous across the interface in the present sharp interface
treatment. For simplicity, hereafter the bar signs are dropped and u and p are used for �u and �p, respectively, even SGS model
is applied.

3. Numerical method

3.1. Navier–Stokes solver

A finite difference method is used to discretize the Navier–Stokes equations on a non-uniform staggered Cartesian grid, in
which the velocity components u;v , and w are defined at centers of cell faces in the x; y, and z directions, respectively, and all
other variables, i.e. p;/;q;l, and mt are defined at cell centers. Fig. 1 shows the staggered arrangement of the variables on a
2D x–y grid.

3.1.1. Fractional-step method
A four-step fractional-step method [6] is employed for velocity–pressure coupling, in which a pressure Poisson equation

is solved to enforce the continuity equation. For time advancement, a second-order semi-implicit scheme is adopted to inte-
grate the momentum equations with the second-order Crank–Nicolson scheme for the diagonal viscous terms and the sec-
ond-order Adams–Bashforth scheme for the convective terms and other viscous terms. The four-step algorithm can be
written as follows:

(1) Predictor:
ûi � un
i

Dt
¼ 1

2
½3An

i � An�1
i � þ 1

2
Cnþ1

i þ Cn
i

h i
� GradiðpnÞ; ð22Þ



Fig. 1. Arrangement of variables on a staggered Cartesian grid.

J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616 6595
(2) First corrector:
u�i � ûi

Dt
¼ GradiðpnÞ; ð23Þ
(3) Pressure Poisson equation:
@

@xi
Gradiðpnþ1Þ ¼ 1

Dt
@u�i
@xi

; ð24Þ
(4) Second corrector:
unþ1
i � u�i

Dt
¼ �Gradiðpnþ1Þ; ð25Þ
where superscript n denotes time step, subscript i ¼ 1;2;3 represents i-coordinate, û and u� are the first and second inter-
mediate velocities, respectively. GradiðpÞ is a pressure gradient term defined at the center of a cell face (collocated with the
ith velocity component) with the jump conditions due to surface tension and gravity incorporated. More details about the
definition and calculation of GradiðpÞ will be discussed in Section 3.1.3. A and C denote terms treated by the Adams–Bash-
forth and Crank–Nicolson schemes, respectively, i.e.
A ¼ ��u � r�uþ 1
q
r � ½lðr�uÞT � þ r � ½mtðr�uÞT �; ð26Þ
and
C ¼ 1
q
r � ½lðr�uÞ� þ r � ½mtðr�uÞ�: ð27Þ
The above four-step fractional-step method does not require special treatment of boundary conditions for the intermediate
velocity to obtain an overall second-order splitting. The pressure correction methods are not applicable here because the
density and pressure are treated in a sharp manner and the following equality cannot be applied directly
1
q
rpnþ1 ¼ 1

q
rpn þ 1

q
rw; ð28Þ
with w for the pressure correction or increment.

3.1.2. Momentum solver
To solve Eq. (22), the convection, diffusion, and pressure gradient terms have to be discretized. Note that the surface ten-

sion and gravity do not appear in Eq. (22) explicitly since it enters the system through the pressure jump condition. In this
study, the diffusion terms are discretized with the standard second-order central difference scheme, and pressure gradient
will be discussed in Section 3.1.3. An arithmetic mean is used to obtain values of velocity components, density, and viscosity
at locations where these values are not defined from the neighboring collocation points with the exception of the interfacial
density as defined in Section 3.1.3.



Fig. 2. Schematic of the QUICK scheme for the convection terms.

6596 J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616
For the convective terms, a third-order QUICK (Quadratic Upwind Interpolation for Convective Kinematics) scheme [23] is
used, whereas central differencing can be applied when there is enough grid resolution. As shown in Fig. 2, U represents a
general velocity component and a different index system ðI; JÞ than that in Fig. 1 is used to indicate the staggered variable
arrangement. Using rxðuUÞ as an example, the discretization can be written as
rxðuUÞ ¼ 1
Dx
ðUIþ1=2;JUIþ1=2;J � UI�1=2;JUI�1=2;JÞ; ð29Þ
where U means a cell face advecting u velocity component from an arithmetic mean. With an upwind procedure, the right
side cell face flux, UIþ1=2;J , can be evaluated using the QUICK scheme as follows:
UIþ1=2;J ¼
1
8 ð�UI�1;J þ 6UI;J þ 3UIþ1;JÞ; if UIþ1=2;J P 0;
1
8 ð�UIþ2;J þ 6UIþ1;J þ 3UI;JÞ; if UIþ1=2;J < 0

(
ð30Þ
on a uniform grid. Lagrange polynomial interpolation can be used to obtained the non-constant coefficients in the above
equation for non-uniform grids.

To invert the momentum equations due to the implicit treatment of the diagonal viscous terms, the approximate factor-
ization method [3] is used. Eq. (22) can be rewritten in the following form (for illustration purpose, a uniform grid is used and
terms due to SGS stresses are not included):
1� Dt
q
r � ðlrÞ

� 	
ûi ¼ un

i þ DtðRHSÞni ; ð31Þ
where ðRHSÞni includes all terms evaluated explicitly in Eq. (22). With the approximate factorization scheme, the above equa-
tion can be expressed as
1� Dt
q

@

@x
l @

@x


 �� 	
1� Dt

q
@

@y
l @

@y


 �� 	
1� Dt

q
@

@z
l @

@z


 �� 	
ûi ¼ un

i þ DtðRHSÞni : ð32Þ
A splitting error of order OðDt3Þ is introduced into the system in this factorization procedure, which does not affect the sec-
ond-order temporal accuracy of the overall algorithm.

Eq. (32) can be inverted by solving three tridiagonal linear equations. Due to the domain decomposition for paralleliza-
tion, the matrix of each tridiagonal system is distributed over a number of processors. Iterative solvers can be used by solving
the sub-system in each block and then updating the ghost cells. However, the performance is not optimal and an extra con-
vergence error is introduced. In this study, the parallel tridiagonal system solver given in [30] has been implemented and
proved to be efficient and robust. In this solver, two tridiagonal systems are inverted in each grid block, one for the sub-sys-
tem residing in this block and one for the coupling of all blocks. The results from the two systems are combined to give the
final solution with minimized number of communications between the grid blocks.

3.1.3. Jump conditions treatment
As shown in Fig. 3, the following definition (see [41] for a similar one) for the pressure gradient in the x direction can be

used to implement the jump conditions given in Eq. (16):
GradxðpÞiþ1=2;j ¼
1

q̂iþ1=2;j

ðpiþ1;j � ½p�Hiþ1;jÞ � ðpi;j � ½p�Hi;jÞ
Dx

¼ 1
q̂iþ1=2;j

ðpiþ1;j � pi;jÞ � ½p�ðHiþ1;j � Hi;jÞ
Dx

; ð33Þ
where H is the Heaviside function defined in Eq. (11), the pressure jump across the interface between cell centers ði; jÞ and
ðiþ 1; jÞ is
½p� ¼ �rjI � ½q�ðxIgx þ yIgy þ zIgzÞ; ð34Þ
with ðxI; yI; zIÞ the interface position vector normal to the reference piezometric plane. The cell face density is defined as



Fig. 3. Schematic of the jump condition treatment for the case Hi;j ¼ 1 and Hiþ1;j ¼ 0.

J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616 6597
q̂iþ1=2;j ¼ qLhiþ1=2;j þ qGð1� hiþ1=2;jÞ; ð35Þ
with
hiþ1=2;j ¼

1; if /i;j P 0 and /iþ1;j P 0;
0; if /i;j < 0 and /iþ1;j < 0;

/i;j

j/i;j jþj/iþ1;j j
; if /i;j P 0 and /iþ1;j < 0;

/iþ1;j
j/i;j jþj/iþ1;j j

; if /i;j < 0 and /iþ1;j P 0:

8>>>>><
>>>>>:

ð36Þ
It is evident from the definition of the Heaviside function H that Eqs. (33) and (35) recover their usual one-fluid forms when
the cell centers ði; jÞ and ðiþ 1; jÞ are in the same phase, i.e. either air or water.

3.1.4. Poisson solver
The pressure Poisson equation, Eq. (24), is discretized using a standard second-order central-difference scheme. On a

staggered grid, the right-hand side of Eq. (24) can be computed readily using the cell face velocity components. The left-hand
side can be discretized by applying the divergence operator to Eq. (33) [26]. Again, using the x direction and a uniform grid as
an example,
1
Dx

Gradxðpnþ1Þiþ1
2;j
¼ 1

Dx
1

q̂iþ1=2

pnþ1
iþ1;j � pnþ1

i;j

� 
� ½p�ðHiþ1;j � Hi;jÞ
Dx

¼ 1

ðDxÞ2
pnþ1

iþ1;j � pnþ1
i;j

q̂iþ1=2;j
� ½p�
ðDxÞ2

Hiþ1;j � Hi;j

q̂iþ1=2;j
; ð37Þ
where the second term due to the pressure jump condition is moved to the right-hand side of the pressure Poisson equation.
Since the interface is advected before the Poisson solver as will be discussed in Section 3.6, the position and curvature of the
interface and then the pressure jumps due to the gravity and surface tension can be computed in advance. Therefore, re-eval-
uation of the right-hand side is not necessary and standard black-box algebraic system solver can be used to solve the Pois-
son equation.

In this study, the pressure Poisson equation is solved using a Krylov-based multigrid solver from the PETSc library [2]
with the GMRES method as the smoother. Usually, one multigrid cycle can reduce the residual norm by one order of mag-
nitude. The solver can converge to a relative residual norm of 10�6 in around ten iterations on a severely stretched grid even
for a density ratio of 1:1000. In general, this is the most expensive part of the whole algorithm.

3.2. Level-set solver

The local (narrow band) level-set method by Peng et al. [34] is used to solve the level-set evolution and reinitialization
equations. In this approach, a narrow band of about a few grid cell widths around the zero level set is setup at each time step
using a mask function. The mask function identifies grid points where the evolution equation is solved; then the level-set
function is reinitialized at all these points and their neighboring points. With the use of a narrow band method, the
additional solution of the level-set function with the current high-order schemes does not pose a significant overhead to
the Navier–Stokes solver.

A fifth-order HJ WENO scheme [19] is used for the spatial discretization of the level-set evolution and reinitialization
equations. In Eq. (5) the term u � r/ has to be approximated at the cell center. Again, the x component of the advection term
is used here to illustrate the treatment. With an upwind scheme



6598 J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616
ð/xÞi;j ¼
ð/�x Þi;j; if ui;j P 0;

ð/þx Þi;j; if ui;j < 0;

(
ð38Þ
the upwinding derivatives ð/�x Þi;j and ð/þx Þi;j are computed using a subset of ð/i�3;j;/i�2;j;/i�1;j;/i;j;/iþ1;j;/iþ2;j;/iþ3;jÞ by follow-
ing the HJ WENO procedure given in [19]. Note on a staggered grid as shown in Fig. 1, the velocity components are not avail-
able at the cell centers and an arithmetic mean is used to calculate the velocity components where needed.

The reinitialization equation can be rewritten as
@/
@s
þ uext � r/� Sð/oÞ ¼ 0; ð39Þ
where the extension velocity is
uext ¼ Sð/oÞ
r/
jr/j : ð40Þ
Then the advection term in Eq. (39) can be evaluated similarly as done in the evolution equation.
The level-set evolution and reinitialization equations are solved using third-order TVD Runge–Kutta scheme [37] for time

advancement. Both equations can be written as the following ODE:
d/
dt
¼ Lð/Þ: ð41Þ
Then the third-order TVD Runge–Kutta scheme for Eq. (41) is
/ð1Þ ¼ /ð0Þ þ DtLð/ð0ÞÞ;

/ð2Þ ¼ 3
4

/ð0Þ þ 1
4

Dt½/ð1Þ þ Lð/ð1ÞÞ�; ð42Þ

/ð3Þ ¼ 1
3

/ð0Þ þ 2
3

Dt½/ð2Þ þ Lð/ð2ÞÞ�;
with /ð0Þ ¼ /n and /nþ1 ¼ /ð3Þ. As to be discussed in Section 3.5, a CFL (Courant–Friedrichs–Lewy) number of 0.5 with all con-
straints including advecting velocity, gravity, and surface tension is used for the Navier–Stokes solver, which means an even
smaller CFL number will be used for Eq. (41) and there is no stability issues for using the above scheme.

3.3. Immersed boundary treatment

The sharp interface immersed boundary formulation by Yang and Balaras [49] is used to treat the immersed moving
boundaries/bodies on a non-uniform Cartesian grid. In this approach, the grid generation for complex geometries is trivial
as the requirement that the grid points coincide with the boundary, which is imperative for body-fitted methods, is relaxed;
whereas the solution near the immersed boundary is reconstructed using momentum forcing in a sharp manner. The de-
tailed procedure is given in [49] and summarized here.

The first step is to establish the grid-interface relation with a given immersed boundary description, such as parametrized
curve/surface or triangulation. In this step all Cartesian grid points are split into the three categories shown in Fig. 4: (1): fluid
points, which are points in the fluid phase; (2) forcing points, which are grid points in the fluid phase with one or more neigh-
boring points in the solid phase; and (3) solid points, which are points in the solid phase. The Navier–Stokes solver described
in the previous section is applied to all grid nodes without distinguishing fluid, forcing, or solid points. A discrete forcing
function, fi, is introduced to the momentum equation to mimic the effect of immersed boundary on the flow field:
ûi � un
i

Dt
¼ 1

2
3An

i � An�1
i

h i
þ 1

2
Cnþ1

i þ Cn
i

h i
� GradiðpnÞ þ f

nþ1
2

i : ð43Þ
For the semi-implicit time advancement scheme used here, a provisional velocity field ~ui for ûi is solved first with all terms
treated by the Crank–Nicolson scheme in Eq. (22) using the explicit forward Euler scheme; then the forcing function in Eq.
(43) can be evaluated in a straightforward manner by substituting ~ui with uf [21]:
f
nþ1

2
i ¼ uf � un

i

Dt
� 1

2
3An

i � An�1
i

h i
� 1

2
Cn

i þ Cn
i

� �
þ GradiðpnÞ: ð44Þ
If the interface and the forcing point coincide, uf is just the velocity boundary condition one wants to apply and the local
velocity of the immersed body that is already known from prescribed or predicted motion. However, usually the points
on the fixed Cartesian grid and the moving interface never coincide and uf has to be computed using the already known
information with various interpolation schemes. In this study, the linear interpolation scheme given by [49] is used and
an example is shown in Fig. 4. An interpolation stencil is setup for a forcing point by three points: the projection of the forc-
ing point on the interface (point 1 in Fig. 4) and two neighbor grid points in the fluid phase (points 2 and 3 in Fig. 4). As
discussed above, the local velocity of the immersed body (point 1) is known and the provisional velocity field ~ui is used



Fig. 4. Grid-interface relation and the interpolation stencil for uf (point 1, 2, and 3). � solid points; � fluid points; 4 forcing points.

J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616 6599
for points 2 and 3. In addition, solid body forcing is imposed on all solid points such that at a specific location a solid point is
given the same velocity of the solid body. The above procedure has been extensively tested for a variety of laminar and tur-
bulent flow problems involving complex moving immersed boundaries and fully coupled fluid–structure interactions with
results in excellent agreement with reference computations and experiments [1,49,50]. Another advantage of this method is
that the basic flow solver keeps intact as a discrete forcing field is applied to the flow field. Therefore, it is much easier to
implement a direct forcing immersed boundary method as in [49] than the cut-cell methods in [22,27], especially, for 3D
problems.

On the other hand, the velocity boundary conditions at the immersed boundary could be violated as a result of impos-
ing the boundary conditions on the intermediate velocity field instead of the final one which satisfies the incompressibility
constraint. This issue has been carefully examined and discussed by Fadlun et al. [9]. They also proposed an iterative ap-
proach to reduce the errors to round-off error, but the additional computational cost was considered unjustified by the
indistinguishable difference between the results from the one-step and the iterative approaches. The former approach
is adopted in this study and we found the errors at the immersed boundaries due to the above problem are similar to
those in [9] (around the order of 10�3 � 10�4), which are quite small and acceptable for the applications we are interested
in here.

3.4. Contact angle boundary condition

The contact angle boundary condition on the immersed boundary is implemented by following an interpolation strategy
similar to the idea discussed above. As shown in Fig. 5, the contact angle boundary condition can be written as
nls � nib ¼ jnlsknibjcosðp� aÞ ¼ �cosðaÞ; ð45Þ
where nls is the normal of level-set function at the contact point, which is calculated using Eq. (8), nib is the outward normal
of the immersed boundary at the contact point, which is well-defined as a basic element of the current immersed boundary
method, and a is the contact angle between the interface and the immersed wall.

The following equations can be obtained by substituting nls in Eq. (45) with Eq. (8):
r/
jr/j � nib ¼

1
jr/j

@/
@n


 �
ib
¼ �cosðaÞ; ð46Þ
or,
@/
@n


 �
ib
¼ �cosðaÞjr/j ¼ �cosðaÞ; ð47Þ
as / is a signed distance function and jr/j ¼ 1.
Therefore, with the normal gradient of level set available, the contact angle boundary condition can be readily specified

using the sharp interface immersed boundary method in [49]. In the 2D space the level-set function / can be approximated
as follows:
/ ¼ b1 þ b2xþ b3y: ð48Þ
It is evident from Eq. (46) that the normal derivative of level-set function at the immersed boundary can be expressed as



Fig. 5. Contact angle boundary condition.

6600 J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616
@/
@n
¼ @/
@x

nx þ
@/
@y

ny; ð49Þ
where nx and ny are the x and y components of the unit normal vector nib, respectively. Subscript ib is dropped for simplicity
in above equation. The x and y derivatives of / can be easily computed from Eq. (48). Therefore, the coefficients b1; b2, and b3

in Eq. (48) can be found by solving the following system:
b1

b2

b3

2
64

3
75 ¼ A�1

@/
@n

/2

/3

�������
3
75 ¼

0 nx ny

1 x2 y2

1 x3 y3

2
64

3
75
�1 @/

@n

/2

/3

2
64

3
75; ð50Þ
where ðx2; y2Þ and ðx3; y3Þ in the 3� 3 matrix A are the coordinates of the two fluid points in the interpolation stencil shown
in Fig. 5. The inversion of matrix A at every forcing point is performed every time the location of the immersed boundary is
updated.

In this paper, a fixed contact angle a ¼ 90	 is used for all cases. However, other different fixed or even dynamic contact
angles can be implemented by the above scheme in a straightforward manner. A field extension procedure to extend the
level-set function into the solid bodies is also applied.

The current approach for implementing the contact angle boundary condition is surprisingly simple and highly consistent
with the overall immersed boundary method. As demonstrated in the results part, this approach is effective for both 2D and
3D problems and is also accurate. Comparing to the iterative method in [40], the 2D local fitted method in [27], and the local
stencil box construction method in [44], this approach has some remarkable advantages as discussed above. It enables the
extension of the sharp interface immersed boundary method for fluid–solid interaction problems to gas–liquid–solid inter-
action problems in a prompt and natural way.

However, due to the direct explicit modification of the level-set function at the forcing points, the volume fractions of
different phases might be slightly changed near the immersed boundary. An additional constraint for volume conservation
has to be imposed in the course of the above procedure if the strict volume conservation is sought. For the wave–body inter-
action problems of interest in the present work, volume conservation is a desirable property but not vital. Therefore, this
issue will be left to future studies, especially, together with our recent work on improving the volume conservation proper-
ties of the level set method using the volume-of-fluid and particle approaches [45,46].

3.5. Time step

The time step Dt is restricted by the CFL condition, gravity, and surface tension. With a CFL restriction of 0.5, the following
relationship can be established as discussed in [20]:
Dt 6 0:5
Ccfl þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCcflÞ2 þ 4ðGcflÞ2 þ 4ðScflÞ2

q
2

0
@

1
A
�1

; ð51Þ
with the convective time step restriction



J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616 6601
Ccfl ¼max
juj
Dx
þ jv j

Dy
þ jwj

Dz


 �
; ð52Þ
the time step restriction due to gravity
Gcfl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgxj
Dx
þ
jgyj
Dy
þ jgzj

Dz

s
; ð53Þ
and the time step restriction due to surface tension
Scfl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rjjj
qGðminðDx;Dy;DzÞÞ2

s
: ð54Þ
3.6. Parallelization and solution procedure

The sharp interface Cartesian grid solver for two-phase flows interacting with moving bodies has been parallelized using a
domain decomposition technique with the Message Passing Interface (MPI) library for inter-process communication. The do-
main decomposition is trivial as a Cartesian grid is divided into uniform blocks with equal number of grid points. The total
number of grid blocks is just the number of processes to be used.

The layers of ghost points to be exchanged between neighboring blocks depends on the finite difference stencils used in
the simulations. If only second-order central-difference schemes are used, then one layer of ghost cells will be adequate even
with the requirement of constructing interpolation stencils for momentum forcing as discussed in [49]. In this study, a third-
order QUICK scheme is used for the convection terms in the momentum equation and a fifth-order HJ WENO scheme is used
for the evolution and reinitialization equations of the level-set function. Therefore, two and three layers of ghost cells for the
velocity components and level-set function are used to ensure no loss of accuracy near the grid block interfaces, respectively.

In summary, the overall algorithm for one time step loop can be listed in detail as follows:

(1) Setup immersed moving boundaries: Section 3.3.
(2) Solve the level-set function /: Section 3.2.
(3) Apply contact angle boundary condition of / on the immersed boundaries: Section 3.4.
(4) Define the fluid properties, density q and viscosity l: Section 2.2.2.
(5) Compute eddy viscosity mt if the SGS model is used: Section 2.3.
(6) Compute the right-hand side of the momentum equation: Section 3.1.2.
(7) Apply momentum forcing for the immersed boundaries: Section 3.3.
(8) Invert the momentum equation: Section 3.1.2.
(9) Apply the first corrector to the first intermediate velocity û: Section 3.1.1.

(10) Compute the right-hand side of the pressure Poisson equation, r � u�: Section 3.1.1.
(11) Add the correction terms due to the jump condition in r � u�: Section 3.1.3.
(12) Setup the coefficient matrix and solve the Poisson equation using PETSc: Section 3.1.4.
(13) Update the velocity field using the second corrector: Section 3.1.1.
(14) Apply field extension for the immersed boundary treatment: Section 3.3.
(15) Compute the time step Dt: Section 3.5.
4. Results

The basic solver for unsteady incompressible two-phase flows is first validated against the micro-scale case of a 3D spher-
ical cap bubble rising in a quiescent liquid. Then the small-scale cases of water entry and exit of a circular cylinder are sim-
ulated and compared with reference data in the literature. The case of two counter-rotating ellipses in a partially filled tank
is carried out to show the capabilities of the current method for two-phase flows with multiple bodies undergoing complex
motions. Then the 3D case of waves generated by sliding mass is presented to illustrate the accuracy and applicability of the
current method in large-scale problems. Finally, several ship flow cases are performed to further validate the method in the
applications of large-scale wave–body interaction problems in the real world. More validation cases can be found in [52,53].

4.1. A spherical cap bubble rising in a quiescent liquid

The spherical cap bubbles rising in a quiescent liquid were studied experimentally in [17]. One of the cases considered
here has the following parameters: qL ¼ 0:8755 g cm�3;qG ¼ 0:001 g cm�3; lL ¼ 1:18 P; lG ¼ 0:01 P, and the surface tension
coefficient r ¼ 32:2 dyn cm�1. The volume of the bubble is 0:94 cm�3 and the corresponding effective radius is 0.61 cm. In
the experiment, the terminal speed of this bubble is 21:5 cm s�1.



6602 J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616
The computational domain for this case is 8 cm� 8 cm� 13:6 cm. Three different grids, 40� 40� 96;48� 48� 120, and
64� 64� 160, are used with the path of the bubble covered by uniform grid sizes of Dh ¼ 0:10 cm;0:08 cm; and 0:06 cm,
respectively. Slip-wall boundary condition is applied to all boundaries. As the bubble rises, it changes from a spherical shape
to a cap shape (see Fig. 6). The dynamic pressure ðp� qgzzÞ profiles across the x–z center plane of the bubble are also shown
in Fig. 6. The sharp jump of pressure due to gravity and surface tension is evident. Also, note that the (absolute) total value of
the pressure jump is building up as the bubble rises due to the increasing distance of the bubble to the reference plane of
zero hydrostatic pressure.

The time series of the bubble top point on three different grids are given in Fig. 7. It shows that the bubble rises at a con-
stant speed after t ¼ 0:15 s. The steady rising speed from the computation on the third grid is 21:0 cm s�1. It is very close to
the experimental value and there is only a 2.3% difference, considering that this grid is still a very coarse grid with only about
20 grid points covering the bubble in one direction. In [13], a 2D axisymmetric simulation using the VOF method was per-
formed on a uniform grid of size Dh ¼ 0:014 cm, which is more than four times finer than the third grid used here, and the
exact experimental value was obtained. To have the same resolution in a 3D simulation, a non-uniform grid of more than 5
million points has to be used. In addition, the time step will be extremely small due to the severe constraint associated with
surface tension, which makes the 3D case on such a grid too expensive for the purpose of validating the code. Adaptive grid
refinement could be helpful but is beyond the scope of the present work. Nevertheless, there is a clear trend of monotonic
grid convergence of th